摘要 (展海涛 杨凯 王贤明 殷树梅)摘要:研究了在环氧树脂体系中,引入特种聚氨酯预聚体作为改性剂制备聚氨酯改性环氧树脂。通过红外图谱来表征改性的环氧树脂表明,改性是由环氧树脂上的羟基...
(展海涛 杨凯 王贤明 殷树梅)
摘要:研究了在
环氧树脂体系中,引入特种
聚氨酯预聚体作为改性剂制备聚氨酯改性环氧树脂。通过红外图谱来表征改性的环氧树脂表明,改性是由环氧树脂上的羟基和聚氨酯预聚体上的异氰酸根两者交联来实现的,聚氨酯改性的环氧树脂其主体是环氧树脂,改性后环氧基团未发生变化。由性能测试可知,与改性前环氧树脂相比,经改性后环氧树脂基本性能未发生变化,但具有良好疏水性能。
关键词:环氧树脂; 聚氨酯;改性;性能测试;疏水性
0前言
随着科学技术的不断进步,对涂层性能要求较高的低表面能涂料得到了快速的发展,使具有疏水性能的涂层研究成为热点。疏水涂层通常主要有氟碳树脂、有机硅树脂两大类材料,依靠其优良的成膜性、适应性,广泛应用于航空航天、印刷、生物化学、传感器、环境污染、金属冶炼、海洋防污等领域。在当前应用的涂料中,具有高憎水性的有自清洁、减阻等特性的涂料市场需求量甚大。环氧树脂(EP)作为制备涂料必不可少的组分,具有良好的粘结性、机械强度和力学性能,它的固化收率小、电绝缘性好、工艺性好、稳定性高,是广泛应用于涂料、胶黏剂、复合材料基体等方面的热固性树脂。但是,目前的纯环氧树脂的表现性能已不能满足应用方面的高憎水性、自清洁、减阻等高技术要求,尤其是固化后环氧树脂的交联密度高、内应力大,因而存在质脆、耐疲劳性、耐热抗冲击韧性差等缺点,这就对环氧树脂的广泛应用造成一定的限制,这就要求对环氧树脂进行深入的改性研究[1-2]。目前,对环氧树脂采用的主要改性方法之一就是聚氨酯改性环氧树脂。聚氨酯(PU)是一种性能优良的具有高弹性、高粘接力、良好柔韧性的高分子材料。其硬度范围宽,而且在高硬度下仍具有良好的橡胶弹性和伸长率,强度优良、耐磨,这就为聚氨酯改性环氧树脂提供了基础的先决条件。聚氨酯改性环氧树脂近年来发展迅速,可与环氧树脂以多种形式结合,并展现出各自的优良特性。特种聚氨酯预聚体改性的环氧树脂在低表面能方面具有优良表现,且有高憎水性的自清洁、减阻等特性,并且能够有良好的工艺性能,其市场的应用前景非常可观[3-8]。
1试验部分
1.1试剂与仪器 试剂:环氧树脂(E-12),工业级;含氟聚氨酯预聚体,自制;甲苯,化学纯;二月桂酸二丁基锡(催化剂),化学纯;醋酸丁酯,化学纯;聚酰胺300,工业级。仪器:有机合成装置、涂4#杯、IR-21红外图谱仪、QJLC落锤冲击试验机、SL200B接触角仪。
1.2改性的环氧树脂涂层的调配 15g改性后的环氧树脂样品,加入化学计量的固化剂聚酰胺300,加入一定量的稀释剂[m(醋酸丁酯)∶m(甲苯)=3∶7],搅拌均匀进行喷涂。配比见表1。
表1改性环氧树脂参考配比
1.3环氧树脂的改性合成
试验步骤:将一定比例的固体环氧树脂与甲苯加热混合,通过加热形成甲苯与水的二元共沸体系,以蒸馏去除E-12中水。蒸馏后的溶液配成固含量为50%的环氧树脂溶液,加入化学计量的自制含氟聚氨酯预聚体[9]。混合、搅匀,控制反应温度在65~75℃,加入催化剂后反应5~10h,得到改性的环氧树脂。
2结果和讨论
2.1甲苯与水二元共沸去除环氧树脂(E-12)的水
由于固体态环氧树脂E-12长期暴露于空气中含有少量水,异氰酸根(—NCO)会与水发生反应,在有异氰酸根参与的反应中应特别注重水的存在。以二苯基甲烷二异氰酸酯(MDI)为例,当水过量存在时MDI就会与水发生反应,先生成不稳定的氨基甲酸,然后氨基甲酸很快分解生成胺和二氧化碳,放出的二氧化碳气体。反应生成的胺会与异氰酸根极易进一步反应生成脲,会使预聚物黏度增大,支化或交联,使预聚物稳定性降低。反应式如下:
由反应可以看出,当有1mol的水(18g)存在时,会有1mol的MDI(250g)参与反应。试验表明暴露于空气中的环氧树脂固体每100g约含水5~10g。本试验在小容器内进行,如果不先脱去环氧树脂中的水,加入反应器的聚氨酯预聚体就会迅速与水反应完,环氧树脂的改性反应就根本不会发生。因此,在聚氨酯存在的反应中对反应物的含水量和环境湿度都有严格要求,通常情况需要将聚酯和聚醚等含羟基组分先加热真空脱水,同时在反应中通入干燥N2保护,以上措施可有效地避免空气湿度的影响。
2.2配成固含量为5%环氧树脂溶液
试验用的环氧树脂是E-12型,为大分子量化合物,有E型环氧树脂的结构简式为:
环氧树脂的平均相对分子质量=2×[环氧当量] E-12的环氧值为0.09~0.14mol/100g,其环氧当量为714~1111g/mol,则E-12(604)的相对平均分子量=1825g/mol。
配制环氧树脂溶液有两方面需要考虑:环氧树脂的质量分数一方面要有利于试验数据的计算,另一方面由于环氧树脂的分子量大,为避免反应过程中出现因黏度过大而引起产物聚团,就要求环氧树脂的质量分数不宜过高。本试验采用环氧树脂溶液配成固含量为50%。
2.3聚氨酯改性环氧树脂的表征
通过红外图谱(图1~图3)对未改性的及改性的环氧树脂,聚氨酯预聚体进行表征,通过表征来分析改性过程的成功与否及改性的试验原理。
图1是纯环氧树脂的红外图谱,3500.08cm-1处是—OH的吸收特征峰,由图2可以看到在2272.15cm-1处—NCO基的吸收峰非常明显,这表明—NCO基的活性非常高。
图3改性后的环氧树脂红外图谱
图2与图3对照可以看出,在3439.08cm-1处—OH基的吸收峰明显;而此时2272.15cm-1处的—NCO基的吸收峰已基本不见,这表明异氰酸根参与了反应,且反应完全;随着—NCO的量的增加,改性后的环氧树脂的红外图谱对照纯环氧树脂的红外图谱,可看出—OH的峰值由3500.08cm-1降到3369.64cm-1,这说明—OH参加了反应,且改性后的体系中仍有部分过量的—OH基未反应,在1720cm-1左右且有酯键峰产生;829.93cm-1处是环氧基团的特征吸收峰。通过图谱对照反应前后其他峰未发生明显变化,表明未发生其他反应。尤其是从图3可看出829.93cm-1处环氧基团的特征吸收峰未发生变化,表明环氧基没有与—NCO基反应,也没有参与其他反应,反应产物的主体结构仍为环氧树脂,说明—NCO基与—OH基发生了反应。由改性后的环氧树脂红外图谱表征,可知聚氨酯预聚体改性环氧树脂的反应原理:
聚氨酯预聚体中的异氰酸根(—NCO)在催化作用下,受热进攻环氧树脂分子链上的羟基(—OH),两者聚合从而达到改性环氧树脂的目的。
聚氨酯改性后的环氧树脂的结构简式为:
波数/cm-12.4改性环氧树脂的性能检测结果(见表2)
表2改性环氧树脂的性能检测结果
注:1)E—12是固含量50%的纯环氧树脂的醋酸丁酯溶液;2)EP0319n(聚氨酯预聚体)∶n(环氧树脂)=0.096,环氧树脂的质量分数为39.4%;EP0322n(聚氨酯预聚体)∶n(环氧树脂)=0.19,环氧树脂的质量分数为33.7%;EP0323n(聚氨酯预聚体)∶n(环氧树脂)=0.38,环氧树脂的质量分数为31.1%;EP0324n(聚氨酯预聚体)∶n(环氧树脂)=0.57,环氧树脂的质量分数为28.0%。
从表2中可以看出,随着聚氨酯预聚体量的增加,改性后的环氧树脂的黏度显著增加,而环氧树脂改性前后由于质量分数不同,黏度由大变小;环氧树脂的密度由于聚氨酯预聚体改性发生变化,改性的环氧树脂在耐冲击和柔韧性方面性能表现良好;环氧树脂改性前后最大的性能变化是水接触角的变化,如图4所示。
一般认为,涂料的表面能低于25mN/m时,即涂料与液体的接触角大于100°时才有比较明显的防污和自清洁效果,含氟树脂具有低的表面能并具有高表面活性、高化学稳定性、高耐热性和疏水疏油的特性,全氟烷烃表面张力可最低降至6mN/m左右。由环氧树脂的水接触角的测试可以看出,含氟聚氨酯预聚体改性后的环氧树脂水接触角在115~120°,而纯E-12为亲水性环氧树脂,这说明改性的环氧树脂具有优良的疏水性能,在防污和自清洁方面表现良好。
2.5聚氨酯预聚体改性的环氧树脂产物的涂膜外观
图5为固化后的环氧树脂涂层外观图,其涂膜平整、表观良好;图6为固化后的环氧树脂涂层样板性能测试图,样板正、反冲击50kg/cm涂层无开裂,划圈试验达到一级标准,同时T弯试验通过一级检验,宏观上改性后的环氧树脂的综合性能良好。
3结论
(1)在环氧树脂体系中,引入含氟聚氨酯预聚体作为改性剂,经红外图谱分析得知,异氰酸根和羟基两者参与反应,这说明含氟聚氨酯预聚体改性环氧树脂(E-12)的研究试验成功,试验原理是环氧树脂分子链上的羟基(—OH)在催化剂存在的条件下和异氰酸根(—NCO)交联实现环氧树脂的改性。(2)聚氨酯改性环氧树脂其主体是环氧树脂,环氧基团未发生改变。(3)经性能测试前后对比可知,含氟聚氨酯预聚体改性过的环氧树脂,在其他基本性能无变化,又具有优良的疏水性能,是良好的防污和自清洁高分子材料。