大量的磨削热将会软化工件表面,使其塑性增加,有利于磨屑的形成。但对被磨工件表面质量、磨和机床等也有不利的影响。
对工件的影响主要表现在工件表面质量和加工精度两方面。磨削的高温会使工件表面层金相组织发生变化。当磨削温度未超过工件的相变温度时,工件表面层的变化 主要决定于金属塑性变形所产生的强化和因磨削热作用所产生的恢复这两个过程的综合作用,磨削温度可以促使工件表面层冷作硬化的恢复;如果磨削温度超过了工 件金属的相变临界温度,则在金属塑性变形的同时,还可能产生金属组织的相变。
磨削的瞬间温度过高而且集中在工件表面层的局部部位,将造成工件表面层金相组织的局部变化,这种变化叫磨削烧伤。烧伤现象将引起工件表面层机械性能下降, 主要是降低工件硬度和耐磨性。磨削烧伤可分为两类:第一类是指工件磨削温度尚未达到工件材料的临界温度,仅仅使工件表面层产生回火现象,这时表面层金相组 织出现回火层。第二类是指工件磨削温度超过工件材料的临界温度,在通过磨削区时由于急速冷却而产生二次淬火现象,此时表面层的金组织由回火层和二次淬火形 成的索氏状、托氏体组成。更高的瞬时磨削温度在磨削过程和冷却过程中造成工件表面层与母体金属很大的温度差,形成很大的热应力。如果热应力超过材料的强 度,就会使工件产生磨削裂纹,特别是在工件冷却过程中,如果表面层与母体金属有较大的温度差,那么表面层就会形成很大的拉应力,并保持位伸残余应力,甚至 产生表面裂纹。裂纹的存在,哪怕是十分细小的微裂纹,也会极大地降低工件的疲劳强度,大大缩短工件的使用寿命。由以上所述可以看到,影响磨削烧伤的主要因 素是磨削瞬间时的高低,而磨削裂纹和残余应力的起因则为被磨工件表面层的温度梯度,这一点在磨削那些导热系数的抗拉强度低的材料时更应特别注意。有时在磨 削导热性差的材料时,为了减少温度梯度,可以用加热被磨工件的方法来降低磨削温度的梯度,防止产生磨削裂纹。
磨削温度使砂轮中的磨粒在加工时反复承受磨削热所形成的温度应力,对磨粒的强度和耐磨性都有不利的影响。对树脂结合剂和橡胶结合剂来讲,过高的磨削温度会 导致树脂和橡胶碳化,加速磨具的磨损。磨削温度还会引起磨削区内强烈的化学反应,致使磨粒很快磨损而失去切削的能力。
高的磨削温度会使所用机床产生热变形,从而影响机床精度。